IPMAT IndoreAlgebra > MediumEntered answer:✅ Correct Answer: 4Related questions:IPMAT Indore 2019Let α,β\alpha, \betaα,β be the roots of x2−x+p=0x^2 - x + p = 0x2−x+p=0 and γ,δ\gamma, \deltaγ,δ be the roots of x2−4x+q=0x^2 - 4x + q = 0x2−4x+q=0 where p and q are integers. If α,β,γ,δ\alpha, \beta, \gamma, \deltaα,β,γ,δ are in geometric progression then p+qp + qp+q isIPMAT Indore 2019There are numbers a1,a2,a3,…,ana_1, a_2, a_3, \ldots, a_na1,a2,a3,…,an each of them being +1+1+1 or −1-1−1. If it is known that a1a2+a2a3+a3a4+…an−1an+ana1=0a_1 a_2 + a_2 a_3 + a_3 a_4 + \ldots a_{n-1} a_n + a_n a_1 = 0a1a2+a2a3+a3a4+…an−1an+ana1=0 thenIPMAT Indore 2025If the sum of the first 212121 terms of the sequence: lnab,lnabb,lnab2,lnab2b,…\ln \frac{a}{b}, \ln \frac{a}{b \sqrt{b}}, \ln \frac{a}{b^{2}}, \ln \frac{a}{b^{2} \sqrt{b}}, \ldotslnba,lnbba,lnb2a,lnb2ba,… is lnambn\ln \frac{a^{m}}{b^{n}}lnbnam, then the value of m+nm+nm+n is \qquad