IPMAT Indore 2025 (MCQ) - Let S_1 = \100, 105, 110, 115, ... \ and S_2 = \100, 95, 90, 85, ... \ be two series in arithmetic progression. If a_k and b_k are the k -th terms of S_1 and S_2 , respectively, then _k=1^20 a_k b_k equals __________. | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2025 (MCQ) PYQs

IPMAT Indore 2025

Algebra
>
Progression & Series

Medium

Let S1={100,105,110,115,...} S_1 = \{100, 105, 110, 115, ... \} and S2={100,95,90,85,...} S_2 = \{100, 95, 90, 85, ... \} be two series in arithmetic progression. If ak a_k and bk b_k are the k k -th terms of S1 S_1 and S2 S_2 , respectively, then k=120akbk \sum_{k=1}^{20} a_k b_k equals __________.

Correct Option: 2
Let's find the value of k=120akbk\sum_{k=1}^{20} a_k b_k.

Given: \newline - S1={100,105,110,115,...}S_1 = \{100, 105, 110, 115, ...\} is an arithmetic progression with first term a1=100a_1 = 100 and common difference d1=5d_1 = 5 \newline - S2={100,95,90,85,...}S_2 = \{100, 95, 90, 85, ...\} is an arithmetic progression with first term b1=100b_1 = 100 and common difference d2=5d_2 = -5

For an arithmetic progression with first term aa and common difference dd, the kk-th term is: \newline Tk=a+(k1)dT_k = a + (k-1)d
For S1S_1: ak=100+(k1)(5)=95+5ka_k = 100 + (k-1)(5) = 95 + 5k
For S2S_2: bk=100+(k1)(5)=1055kb_k = 100 + (k-1)(-5) = 105 - 5k

Now let's find the product akbka_k b_k:
akbk=(95+5k)(1055k)a_k b_k = (95 + 5k)(105 - 5k) \newline =9,975+50k25k2= 9,975 + 50k - 25k^2

Calculating the sum k=120akbk=k=120(9,975+50k25k2)\sum_{k=1}^{20} a_k b_k = \sum_{k=1}^{20} (9,975 + 50k - 25k^2)
This splits into three parts: \newline =20×9,975+50k=120k25k=120k2= 20 \times 9,975 + 50\sum_{k=1}^{20} k - 25\sum_{k=1}^{20} k^2
Part 1: 20×9,975=199,50020 \times 9,975 = 199,500
Part 2: Using k=1nk=n(n+1)2\sum_{k=1}^{n} k = \dfrac{n(n+1)}{2}
50k=120k=50×20×212=10,50050\sum_{k=1}^{20} k = 50 \times \dfrac{20 \times 21}{2} = 10,500
Part 3: Using k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \dfrac{n(n+1)(2n+1)}{6}
25k=120k2=25×20×21×416=71,75025\sum_{k=1}^{20} k^2 = 25 \times \dfrac{20 \times 21 \times 41}{6} = 71,750

Combining all parts: k=120akbk=199,500+10,50071,750=138,250\sum_{k=1}^{20} a_k b_k = 199,500 + 10,500 - 71,750 = 138,250
Therefore, k=120akbk=138,250\sum_{k=1}^{20} a_k b_k = 138,250

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question