IPMAT Indore 2025 (MCQ) - Let P(x) be a quadratic polynomial such that |arrayll P(0) & P(1) \\ P(0) & P(2) array|=0 Let P(0)=2 and P(1)+P(2)+P(3)=14. Then P(4) equals | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2025 (MCQ) PYQs

IPMAT Indore 2025

Algebra
>
Quadratic Equations

Easy

Let P(x)P(x) be a quadratic polynomial such that
P(0)P(1)P(0)P(2)=0\left|\begin{array}{ll} P(0) & P(1) \\ P(0) & P(2) \end{array}\right|=0
Let P(0)=2P(0)=2 and P(1)+P(2)+P(3)=14P(1)+P(2)+P(3)=14. Then P(4)P(4) equals

Correct Option: 3
Let's evaluate the determinant in the first condition:
P(0)P(1)P(0)P(2)=P(0)P(2)P(0)P(1)=P(0)[P(2)P(1)]\left|\begin{array}{ll}P(0) & P(1) \\P(0) & P(2)\end{array}\right| = P(0)P(2) - P(0)P(1) = P(0)[P(2)-P(1)]
Since this equals zero, and P(0)=20P(0)=2 \neq 0, we must have P(2)=P(1)P(2) = P(1).

Since P(x)P(x) is quadratic, we can write it as:
P(x)=ax2+bx+cP(x) = ax^2 + bx + c
With P(0)=c=2P(0) = c = 2, our polynomial is:
P(x)=ax2+bx+2P(x) = ax^2 + bx + 2

Using P(2)=P(1)P(2) = P(1):
P(1)=a+b+2P(1) = a + b + 2
P(2)=4a+2b+2P(2) = 4a + 2b + 2
Setting them equal:
a+b+2=4a+2b+2a + b + 2 = 4a + 2b + 2
0=3a+b0 = 3a + b
b=3ab = -3a
So our polynomial is now:
P(x)=ax23ax+2P(x) = ax^2 - 3ax + 2

From P(1)+P(2)+P(3)=14P(1) + P(2) + P(3) = 14:
P(1)=2a+2P(1) = -2a + 2
P(2)=2a+2P(2) = -2a + 2
P(3)=9a9a+2=2P(3) = 9a - 9a + 2 = 2
This gives us:
(2a+2)+(2a+2)+2=14(-2a + 2) + (-2a + 2) + 2 = 14
4a+6=14-4a + 6 = 14
4a=8-4a = 8
a=2a = -2

With a=2a = -2 and b=3a=6b = -3a = 6, our polynomial is:
P(x)=2x2+6x+2P(x) = -2x^2 + 6x + 2
Therefore:
P(4)=2(16)+6(4)+2=32+24+2=6P(4) = -2(16) + 6(4) + 2 = -32 + 24 + 2 = -6

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question