IPMAT IndoreAlgebra > Hard-343026-38✅ Correct Option: 1Related questions:IPMAT Indore 2019If (1+x−2x2)6=A0+∑r=112Arxr(1 + x - 2x^2)^6 = A_0 + \sum_{r=1}^{12} A_r x^r(1+x−2x2)6=A0+∑r=112Arxr, then the value of A2+A4+A6+⋯+A12A_2 + A_4 + A_6 + \cdots + A_{12}A2+A4+A6+⋯+A12 isIPMAT Indore 2025Let S1={100,105,110,115,...}S_1 = \{100, 105, 110, 115, ... \}S1={100,105,110,115,...} and S2={100,95,90,85,...}S_2 = \{100, 95, 90, 85, ... \}S2={100,95,90,85,...} be two series in arithmetic progression. If aka_kak and bkb_kbk are the kkk-th terms of S1S_1S1 and S2S_2S2, respectively, then ∑k=120akbk\sum_{k=1}^{20} a_k b_k∑k=120akbk equals __________.IPMAT Indore 2025If the sum of the first 212121 terms of the sequence: lnab,lnabb,lnab2,lnab2b,…\ln \frac{a}{b}, \ln \frac{a}{b \sqrt{b}}, \ln \frac{a}{b^{2}}, \ln \frac{a}{b^{2} \sqrt{b}}, \ldotslnba,lnbba,lnb2a,lnb2ba,… is lnambn\ln \frac{a^{m}}{b^{n}}lnbnam, then the value of m+nm+nm+n is \qquad