IPMAT Indore 2025 (MCQ) - Let A(1,3) and B(5,1) be two points. If a line with slope m intersects AB at an angle of 45°, then the possible values of m are | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2025 (MCQ) PYQs

IPMAT Indore 2025

Geometry
>
Straight Lines

Medium

Let A(1,3)A(1,3) and B(5,1)B(5,1) be two points. If a line with slope mm intersects ABAB at an angle of 45°45°, then the possible values of mm are

Correct Option: 3
Calculate the slope of line ABAB:
mAB=yByAxBxA=1351=24=12m_{AB} = \dfrac{y_B - y_A}{x_B - x_A} = \dfrac{1 - 3}{5 - 1} = \dfrac{-2}{4} = -\dfrac{1}{2}

When two lines with slopes m1m_1 and m2m_2 intersect at angle θθ, we use the formula:
tanθ=m2m11+m1m2\tan θ = \left|\dfrac{m_2 - m_1}{1 + m_1m_2}\right|
In our case, m1=12m_1 = -\dfrac{1}{2} and m2=mm_2 = m. Since the angle is 45°45°, tan(45°)=1\tan(45°) = 1.
So we have:
1=m(12)1+(12)m=m+121m21 = \left|\dfrac{m - (-\frac{1}{2})}{1 + (-\frac{1}{2})m}\right| = \left|\dfrac{m + \frac{1}{2}}{1 - \frac{m}{2}}\right|

Removing the absolute value gives us two cases:
Case 1: m+121m2=1\dfrac{m + \frac{1}{2}}{1 - \frac{m}{2}} = 1
m+12=1m2m + \dfrac{1}{2} = 1 - \dfrac{m}{2}
m+m2=112m + \dfrac{m}{2} = 1 - \dfrac{1}{2}
3m2=12\dfrac{3m}{2} = \dfrac{1}{2}
m=13m = \dfrac{1}{3}

Case 2: m+121m2=1\dfrac{m + \frac{1}{2}}{1 - \frac{m}{2}} = -1
m+12=1+m2m + \frac{1}{2} = -1 + \frac{m}{2}
mm2=112m - \frac{m}{2} = -1 - \frac{1}{2}
m2=32\frac{m}{2} = -\frac{3}{2}
m=3m = -3

Therefore, the possible values of mm are 13\dfrac{1}{3} and 3-3.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question