IPMAT Indore 2025 (MCQ) - The remainder when 11^1011 + 1011^11 is divided by 9 is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2025 (MCQ) PYQs

IPMAT Indore 2025

Number System
>
Remainder

Medium

The remainder when 111011+10111111^{1011} + 1011^{11} is divided by 99 is

Correct Option: 2
We know that:
11101121011(mod9)11^{1011} \equiv 2^{1011} \pmod{9}

Let's examine the pattern of powers of 22 modulo 99: \newline 212(mod9)2^1 \equiv 2 \pmod{9} \newline 224(mod9)2^2 \equiv 4 \pmod{9} \newline 238(mod9)2^3 \equiv 8 \pmod{9} \newline 24167(mod9)2^4 \equiv 16 \equiv 7 \pmod{9} \newline 25145(mod9)2^5 \equiv 14 \equiv 5 \pmod{9} \newline 26101(mod9)2^6 \equiv 10 \equiv 1 \pmod{9}
We see the pattern repeats every 66 powers, so we need to find 1011mod61011 \mod 6:
1011=6×168+31011 = 6 \times 168 + 3
Therefore, 21011238(mod9)2^{1011} \equiv 2^3 \equiv 8 \pmod{9}

For 1011111011^{11}, we first determine 1011mod91011 \mod 9:
Using the digit sum rule: 1+0+1+1=31 + 0 + 1 + 1 = 3
So 10113(mod9)1011 \equiv 3 \pmod{9}, which means 101111311(mod9)1011^{11} \equiv 3^{11} \pmod{9}

Examining powers of 33 modulo 99: \newline 313(mod9)3^1 \equiv 3 \pmod{9} \newline 3290(mod9)3^2 \equiv 9 \equiv 0 \pmod{9}
Since 320(mod9)3^2 \equiv 0 \pmod{9}, any higher power will also be 00 modulo 99.
Therefore, 3110(mod9)3^{11} \equiv 0 \pmod{9}

Finally, 111011+1011118+08(mod9)11^{1011} + 1011^{11} \equiv 8 + 0 \equiv 8 \pmod{9}
The remainder is 8\boxed{8}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question