IPMAT Indore 2019Algebra > Hard31323029✅ Correct Option: 1Related questions:A new sequence is obtained from the sequence of positive integers (1,2,3,…)(1,2,3, \ldots)(1,2,3,…) by deleting all the perfect squares. Then the 2022nd 2022^{\text {nd }}2022nd term of the new sequence is ________.The 3rd ,14th 3^{\text {rd }}, 14^{\text {th }}3rd ,14th and 69th 69^{\text {th }}69th terms of an arithmetic progression form three distinct and consecutive terms of a geometric progression. If the next term of the geometric progression is the nth n^{\text {th }}nth term of the arithmetic progression, then nnn equals ________.Assume that all positive integers are written down consecutively from left to right as in 1234567891011...... The 6389th digit in this sequence is