IPMAT Indore 2025 (MCQ) - The area of the triangle, formed by the straight lines y = 0, 12x - 5y = 0, and 3x + 4y = 7 is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2025 (MCQ) PYQs

IPMAT Indore 2025

Geometry
>
Straight Lines

Medium

The area of the triangle, formed by the straight lines y=0,12x5y=0,y = 0, 12x - 5y = 0, and 3x+4y=73x + 4y = 7 is

Correct Option: 2
- Line 1: y=0y = 0 (the x-axis)
- Line 2: 12x5y=012x - 5y = 0 or y=12x5y = \dfrac{12x}{5}
- Line 3: 3x+4y=73x + 4y = 7 or y=73x4y = \dfrac{7-3x}{4}

Find intersection points:
Point A (lines 1 and 2):
- When y=0y = 0:
12x=0    x=012x = 0 \implies x = 0
So point A is (0,0)(0,0)

Point B (lines 1 and 3):
- When y=0y = 0:
3x=7    x=733x = 7 \implies x = \frac{7}{3}
So point B is (73,0)(\frac{7}{3},0)

- Point C (lines 2 and 3):
12x5=73x4\frac{12x}{5} = \frac{7-3x}{4}
48x5=73x\frac{48x}{5} = 7-3x
48x+15x=3548x + 15x = 35
63x=3563x = 35
x=3563=59x = \dfrac{35}{63} = \dfrac{5}{9}
Substitute into line 2:
y=12595=43y = \dfrac{12 \cdot \frac{5}{9}}{5} = \dfrac{4}{3}
So point C is (59,43)(\frac{5}{9}, \frac{4}{3})

Calculate the area using the formula for triangle area given vertices:
Area =12x1(y2y3)+x2(y3y1)+x3(y1y2)=\dfrac{1}{2}|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)|
=120(043)+7343+590=\dfrac{1}{2}|0 \cdot (0-\dfrac{4}{3}) + \dfrac{7}{3} \cdot \dfrac{4}{3} + \dfrac{5}{9} \cdot 0|
=127433=\dfrac{1}{2} \cdot \dfrac{7 \cdot 4}{3 \cdot 3}
=12289=\dfrac{1}{2} \cdot \dfrac{28}{9}
=149=\dfrac{14}{9} square units

Alternatively, using Area=12baseheight\text{Area} = \frac{1}{2} \cdot \text{base} \cdot \text{height}:
Base along x-axis =73=\frac{7}{3}
Height to point C =43=\frac{4}{3}
Area =127343=149=\dfrac{1}{2} \cdot \dfrac{7}{3} \cdot \dfrac{4}{3} = \dfrac{14}{9} square units

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question