IPMAT Indore 2024Algebra > Easy2710020025✅ Correct Option: 1Related questions:Consider the following statements: (i) When (0<x<1)(0 < x < 1)(0<x<1), then (11+x<1−x+x2)(\frac{1}{1+x} < 1 - x + x^2)(1+x1<1−x+x2) (ii) When (0<x<1)(0 < x < 1)(0<x<1), then (11+x>1−x+x2)(\frac{1}{1+x} > 1 - x + x^2)(1+x1>1−x+x2) (iii) When (−1<x<0)(-1 < x < 0)(−1<x<0), then (11+x<1−x+x2)(\frac{1}{1+x} < 1 - x + x^2)(1+x1<1−x+x2) (iv) When (−1<x<0)(-1 < x < 0)(−1<x<0), then (11+x>1−x+x2)(\frac{1}{1+x} > 1 - x + x^2)(1+x1>1−x+x2) Then the correct statements are:The set of all real values of x satisfying the inequality x2(x+1)(x−1)(2x+1)3>0\dfrac{x^2(x+1)}{(x-1)(2x+1)^3} > 0(x−1)(2x+1)3x2(x+1)>0 isIf x∈(a,b)x ∈ (a, b)x∈(a,b) satisfies the inequality x−3x2+3x+2≥1\dfrac{x - 3}{x^2 + 3x + 2} \geq 1x2+3x+2x−3≥1, then the largest possible value of b−ab - ab−a is