IPMAT Indore 2019Modern Math > Mediumx∈(13,1)x \in \left( \frac{1}{3}, 1 \right)x∈(31,1)x∈(13,2)x \in \left( \frac{1}{3}, 2 \right)x∈(31,2)x∈(0,13)∪(1,2)x \in \left( 0, \frac{1}{3} \right) \cup \left( 1, 2 \right)x∈(0,31)∪(1,2)x∈(−∞,1)x \in \left( -\infty, 1 \right)x∈(−∞,1)✅ Correct Option: 1Related questions:If x,y,zx, y, zx,y,z are positive real numbers such that x12=y16=z24x^{12} = y^{16} = z^{24}x12=y16=z24 and the three quantities 3logyx,4logzy,nlogxz3 \log_y x, 4 \log_z y, n \log_x z3logyx,4logzy,nlogxz are in arithmetic progression, then the value of nnn isThe value of (log330)−1+(log4900)−1+(log530)−1(\log_{3} 30)^{-1} + (\log_{4} 900)^{-1} + (\log_{5} 30)^{-1}(log330)−1+(log4900)−1+(log530)−1 isIf log3(x2−1)\log_3(x^2 - 1)log3(x2−1), log3(2x2+1)\log_3(2x^2 + 1)log3(2x2+1) and log3(6x2+3)\log_3(6x^2 + 3)log3(6x2+3) are the first three terms of an arithmetic progression, then the sum of the next three terms of the progression is