IPMAT Indore 2019Modern Math > Medium0.53021✅ Correct Option: 4Related questions:Let a=(log74)(log75−log72)log725(log78−log74)a = \dfrac{(\log_7 4)(\log_7 5 - \log_7 2)}{\log_{7} 25 (\log_7 8 - \log_7 4)}a=log725(log78−log74)(log74)(log75−log72). Then the value of 5a5^a5a isThe inequality logaf(x)<logag(x)\log_{a}{f(x)} < \log_{a}{g(x)}logaf(x)<logag(x) implies thatThe value of (0.04log5(14+18+116+...))(0.04^{log_{\sqrt{5}}(\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + ...)})(0.04log5(41+81+161+...)) is __________.