IPMAT Indore 2019Modern Math > Easy0.50.50.5111222333✅ Correct Option: 1Related questions:If A=[10120]A=\left[\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 0\end{array}\right]A=[12100] then A2022A^{2022}A2022 isIf AAA is a 3×33 \times 33×3 non-zero matrix such that A2=0A^2 = 0A2=0 then the determinant of (I+A)50−50A(I + A)^{50} - 50A(I+A)50−50A is equal toSuppose ∣aa2a3−1bb2b3−1cc2c3−1∣=0\left|\begin{array}{lll}a & a^{2} & a^{3}-1 \\ b & b^{2} & b^{3}-1 \\ c & c^{2} & c^{3}-1\end{array}\right|=0abca2b2c2a3−1b3−1c3−1=0, where a,b\mathrm{a}, \mathrm{b}a,b and c\mathrm{c}c are distinct real numbers. If a=3{a}=3a=3, then the value of abcabcabc is: