IPMAT Indore 2019Geometry > Hard3(m2+1)4\frac{3(m^2+1)}{4}43(m2+1)3(m2−1)4\frac{3(m^2-1)}{4}43(m2−1)1−3(m2−1)41-\frac{3(m^2-1)}{4}1−43(m2−1)1−3(m2−1)241-\frac{3(m^2-1)^2}{4}1−43(m2−1)2✅ Correct Option: 4Related questions:For 0<θ<π40\lt\theta\lt\frac{\pi}{4}0<θ<4π, let a=((sinθ)sinθ)(log2cosθ),b=((cosθ)sinθ)(log2sinθ),c=((sinθ)cosθ)(log2cosθ)a=\left((\sin \theta)^{\sin \theta}\right)\left(\log _{2} \cos \theta\right), b=\left((\cos \theta)^{\sin \theta}\right)\left(\log _{2} \sin \theta\right), c=\left((\sin \theta)^{\cos \theta}\right)\left(\log _{2} \cos \theta\right)a=((sinθ)sinθ)(log2cosθ),b=((cosθ)sinθ)(log2sinθ),c=((sinθ)cosθ)(log2cosθ) and d=((sinθ)sinθ)(log2sinθ)d=\left((\sin \theta)^{\sin \theta}\right)\left(\log _{2} \sin \theta\right)d=((sinθ)sinθ)(log2sinθ). Then, the median value in the sequence a,b,c,da, b, c, da,b,c,d isAyesha is standing atop a vertical tower 200m200 m200m high and observes a car moving away from the tower on a straight, horizontal road from the foot of the tower. At 11:00 AM, she observes the angle of depression of the car to be 45∘45^{\circ}45∘. At 11:02 AM, she observes the angle of depression of the car to be 30∘30^{\circ}30∘. The speed at which the car is moving is approximatelyThe number of pairs (x,y)(x, y)(x,y) satisfying the equation sinx+siny=sin(x+y)\sin x + \sin y = \sin(x + y)sinx+siny=sin(x+y) and ∣x∣+∣y∣=1|x| + |y| = 1∣x∣+∣y∣=1 is