IPMAT Indore 2022Algebra > Hard2061✅ Correct Option: 2Related questions:Suppose that a real-valued function f(x)f(x)f(x) of real numbers satisfies f(x+xy)=f(x)+f(xyf(x + xy) = f(x) + f(xyf(x+xy)=f(x)+f(xy) for all real x,y,x, y,x,y, and that f(2020)=1f(2020) = 1f(2020)=1. Compute f(2021)f(2021)f(2021).Given f(x)=x2+log3xf(x) = x^2 + \log_3 xf(x)=x2+log3x and g(y)=2y+f(y)g(y) = 2y + f(y)g(y)=2y+f(y), then the value of g(3)g(3)g(3) equalsIf f(1)=1f(1) = 1f(1)=1 and f(n)=3n−f(n−1)f(n) = 3n - f(n - 1)f(n)=3n−f(n−1) for all integers n>1n > 1n>1 , then the value of f(2023)f(2023)f(2023) is