IPMAT IndoreAlgebra > Medium18\frac{1}{8}8112\frac{1}{2}2113226\frac{3^{2}}{2^{6}}2632✅ Correct Option: 1Related questions:IPMAT Indore 2022If f(x2+f(y))=xf(x)+yf\left(x^{2}+f(y)\right)=x f(x)+yf(x2+f(y))=xf(x)+y for all non-negative integers xxx and yyy, then the value of [f(0)]2+f(0)[f(0)]^{2}+f(0)[f(0)]2+f(0) equals _________.IPMAT Indore 2024Let fff and ggg be two functions defined by f(x)=∣x+∣x∣∣f(x) = |x + |x||f(x)=∣x+∣x∣∣ and g(x)=1xg(x) = \frac{1}{x}g(x)=x1 for x≠0x \neq 0x=0. If f(a)+g(f(a))=136f(a) + g(f(a)) = \frac{13}{6}f(a)+g(f(a))=613 for some real aaa, then the maximum possible value off(g(a)) f(g(a))f(g(a)) is:IPMAT Indore 2021If a function f(a)=max(a,0)f(a) = max (a, 0)f(a)=max(a,0) then the smallest integer value of xxx for which the equation f(x−3)+2f(x+1)=8f(x - 3) + 2f(x + 1) = 8f(x−3)+2f(x+1)=8 holds true is _______.