IPMAT Indore 2022Algebra > Medium18\frac{1}{8}8112\frac{1}{2}2113226\frac{3^{2}}{2^{6}}2632✅ Correct Option: 1Related questions:IPMAT Indore 2022Suppose that a real-valued function f(x)f(x)f(x) of real numbers satisfies f(x+xy)=f(x)+f(xyf(x + xy) = f(x) + f(xyf(x+xy)=f(x)+f(xy) for all real x,y,x, y,x,y, and that f(2020)=1f(2020) = 1f(2020)=1. Compute f(2021)f(2021)f(2021).IPMAT Indore 2022If f(1)=1f(1) = 1f(1)=1 and f(n)=3n−f(n−1)f(n) = 3n - f(n - 1)f(n)=3n−f(n−1) for all integers n>1n > 1n>1 , then the value of f(2023)f(2023)f(2023) isIPMAT Indore 2022Let fff and ggg be two functions defined by f(x)=∣x+∣x∣∣f(x) = |x + |x||f(x)=∣x+∣x∣∣ and g(x)=1xg(x) = \frac{1}{x}g(x)=x1 for x≠0x \neq 0x=0. If f(a)+g(f(a))=136f(a) + g(f(a)) = \frac{13}{6}f(a)+g(f(a))=613 for some real aaa, then the maximum possible value off(g(a)) f(g(a))f(g(a)) is: