IPMAT Indore 2022Algebra > Medium18\frac{1}{8}8112\frac{1}{2}2113226\frac{3^{2}}{2^{6}}2632✅ Correct Option: 1Related questions:IPMAT Indore 2021Suppose that a real-valued function f(x)f(x)f(x) of real numbers satisfies f(x+xy)=f(x)+f(xyf(x + xy) = f(x) + f(xyf(x+xy)=f(x)+f(xy) for all real x,y,x, y,x,y, and that f(2020)=1f(2020) = 1f(2020)=1. Compute f(2021)f(2021)f(2021).IPMAT Indore 2021If a function f(a)=max(a,0)f(a) = max (a, 0)f(a)=max(a,0) then the smallest integer value of xxx for which the equation f(x−3)+2f(x+1)=8f(x - 3) + 2f(x + 1) = 8f(x−3)+2f(x+1)=8 holds true is _______.IPMAT Indore 2020Given f(x)=x2+log3xf(x) = x^2 + \log_3 xf(x)=x2+log3x and g(y)=2y+f(y)g(y) = 2y + f(y)g(y)=2y+f(y), then the value of g(3)g(3)g(3) equals