IPMAT Indore 2022Geometry > Harda+b2\frac{a+b}{2}2a+ba+d2\frac{a+d}{2}2a+db+c2\frac{b+c}{2}2b+cc+d2\frac{c+d}{2}2c+d✅ Correct Option: 2Related questions:The number of pairs (x,y)(x, y)(x,y) satisfying the equation sinx+siny=sin(x+y)\sin x + \sin y = \sin(x + y)sinx+siny=sin(x+y) and ∣x∣+∣y∣=1|x| + |y| = 1∣x∣+∣y∣=1 isIf cosαcos \alphacosα + cosβcos \betacosβ = 1 then the maximum value of sinα−sinβsin \alpha - sin \betasinα−sinβ isIf the angles A,B,CA, B, CA,B,C of a triangle are in arithmetic progression such that sin(2A+B)=1/2\sin(2A + B) = 1/2sin(2A+B)=1/2 then sin(B+2C)\sin(B + 2C)sin(B+2C) is equal to