IPMAT Indore 2022 (MCQ) - The value of k for which the following lines are concurrent is x-y-1=0 2x+3y-12=0 2x-3y+k=0 | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2022 (MCQ) PYQs

IPMAT Indore 2022

Geometry
>
Straight Lines

Medium

The value of kk for which the following lines are concurrent is
xy1=02x+3y12=02x3y+k=0x-y-1=0 \newline 2x+3y-12=0 \newline 2x-3y+k=0

Correct Option: 3
To find the value of kk for which the three lines are concurrent (pass through a common point).

For lines a1x+b1y+c1=0a_1x + b_1y + c_1 = 0, a2x+b2y+c2=0a_2x + b_2y + c_2 = 0, and a3x+b3y+c3=0a_3x + b_3y + c_3 = 0 to be concurrent, their determinant must equal zero:
a1b1c1a2b2c2a3b3c3=0\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0

From our three lines: \newline - Line 1: xy1=0x-y-1=0 with coefficients (1,1,1)(1, -1, -1) \newline - Line 2: 2x+3y12=02x+3y-12=0 with coefficients (2,3,12)(2, 3, -12) \newline - Line 3: 2x3y+k=02x-3y+k=0 with coefficients (2,3,k)(2, -3, k)
Setting up the determinant:
111231223k=0\begin{vmatrix} 1 & -1 & -1 \\ 2 & 3 & -12 \\ 2 & -3 & k \end{vmatrix} = 0

Expanding along the first row:
13123k(1)2122k+(1)2323=01 \cdot \begin{vmatrix} 3 & -12 \\ -3 & k \end{vmatrix} - (-1) \cdot \begin{vmatrix} 2 & -12 \\ 2 & k \end{vmatrix} + (-1) \cdot \begin{vmatrix} 2 & 3 \\ 2 & -3 \end{vmatrix} = 0
1(3k(12)(3))+1(2k(12)(2))1(2(3)3(2))=01 \cdot (3k - (-12)(-3)) + 1 \cdot (2k - (-12)(2)) - 1 \cdot (2(-3) - 3(2)) = 0
1(3k36)+1(2k+24)1(66)=01 \cdot (3k - 36) + 1 \cdot (2k + 24) - 1 \cdot (-6 - 6) = 0
3k36+2k+24+12=03k - 36 + 2k + 24 + 12 = 0
5k=05k = 0
k=0k = 0

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question