IPMAT Indore 2019Geometry > HardEntered answer:✅ Correct Answer: 6Related questions:If the angles A,B,CA, B, CA,B,C of a triangle are in arithmetic progression such that sin(2A+B)=1/2\sin(2A + B) = 1/2sin(2A+B)=1/2 then sin(B+2C)\sin(B + 2C)sin(B+2C) is equal toThe set of all real value of ppp for which the equation 3sin2x+12cosx−3=p3 \sin^2x + 12 \cos x - 3 = p3sin2x+12cosx−3=p has at least one solution isThe value of cos2(π8)+cos2(3π8)+cos2(5π8)+cos2(7π8)\cos^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{3\pi}{8}\right) + \cos^2\left(\frac{5\pi}{8}\right) + \cos^2\left(\frac{7\pi}{8}\right)cos2(8π)+cos2(83π)+cos2(85π)+cos2(87π) is