IPMAT Indore 2022Modern Math > Medium[101220220]\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2^{2022}} & 0\end{array}\right][122022100][1010110]\left[\begin{array}{cc}1 & 0 \\ 1011 & 0\end{array}\right][1101100][1020220]\left[\begin{array}{cc}1 & 0 \\ 2022 & 0\end{array}\right][1202200]None of these✅ Correct Option: 4Related questions:If A=[2n41]A = \begin{bmatrix} 2 & n \\ 4 & 1 \end{bmatrix}A=[24n1] such that A3=27[4qpr]A^3 = 27 \begin{bmatrix} 4 & q \\ p & r \end{bmatrix}A3=27[4pqr], then p+q+rp + q + rp+q+r equals _________If A,BA, BA,B and A+BA + BA+B are non singular matrices and AB=BAAB = BAAB=BA then 2A−B−A(A+B)−1A+B(A+B)−1B2A - B - A(A + B)^{-1}A + B(A + B)^{-1} B2A−B−A(A+B)−1A+B(A+B)−1B equalsIf A=[100001010]A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]A=100001010, then the absolute value of the determinant of (A9+A6+A3+A)\left(A^{9}+A^{6}+A^{3}+A\right)(A9+A6+A3+A) is __________.