IIM Bangalore (UGAT)Calculus > Hard(π3,π2)\left(\frac{\pi}{3}, \frac{\pi}{2}\right)(3π,2π)(π3,0)\left(\frac{\pi}{3}, 0\right)(3π,0)(0,0)(0, 0)(0,0)(π3,π6)\left(\frac{\pi}{3}, \frac{\pi}{6}\right)(3π,6π)✅ Correct Option: 4Related questions:Sample PaperThe slope of the tangent to the curve y=x2−4cosxy = x^2 - 4\cos xy=x2−4cosx, x∈[0,π]x \in [0, \pi]x∈[0,π] is maximum when xxx is equal toPYP 2025Let f:(0,65)→Rf: (0, \frac{6}{5}) \to \mathbb{R}f:(0,56)→R & g:(0,65)→Rg: (0, \frac{6}{5}) \to \mathbb{R}g:(0,56)→R be functions defined by f(x)=[x2]f(x) = [x^2]f(x)=[x2] and g(x)=(∣x−1∣+∣x−2∣)f(x)g(x) = (|x - 1| + |x - 2|)f(x)g(x)=(∣x−1∣+∣x−2∣)f(x) Here [a]=[a] = [a]= the highest integer ≤a\leq a≤a. ThenPYP 2025Let h(x)=min[sinx],[cosx]]h(x) = min[\sin x], [\cos x]]h(x)=min[sinx],[cosx]], for all real numbers xxx. Let S be the set of points in (0,π2)(0, \frac{\pi}{2})(0,2π) where h(x)h(x)h(x) is not differentiable. Then the cardinality of S is: