IIM Bangalore (UGAT)Calculus > Hardπ3\frac{\pi}{3}3π05π6\frac{5\pi}{6}65π2π3\frac{2\pi}{3}32π✅ Correct Option: 4Related questions:PYP 2025Let f:(0,65)→Rf: (0, \frac{6}{5}) \to \mathbb{R}f:(0,56)→R & g:(0,65)→Rg: (0, \frac{6}{5}) \to \mathbb{R}g:(0,56)→R be functions defined by f(x)=[x2]f(x) = [x^2]f(x)=[x2] and g(x)=(∣x−1∣+∣x−2∣)f(x)g(x) = (|x - 1| + |x - 2|)f(x)g(x)=(∣x−1∣+∣x−2∣)f(x) Here [a]=[a] = [a]= the highest integer ≤a\leq a≤a. ThenSample PaperLet f(x)=tan−1(1−cosx1+cosx)f(x) = \tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)f(x)=tan−1(1+cosx1−cosx); x∈(0,π)x \in (0,\pi)x∈(0,π). A normal to y=f(x)y = f(x)y=f(x) at x=π3x = \frac{\pi}{3}x=3π passes through the point:PYP 2025Let h(x)=min[sinx],[cosx]]h(x) = min[\sin x], [\cos x]]h(x)=min[sinx],[cosx]], for all real numbers xxx. Let S be the set of points in (0,π2)(0, \frac{\pi}{2})(0,2π) where h(x)h(x)h(x) is not differentiable. Then the cardinality of S is: