Skip to main contentSkip to question navigationSkip to solution

IPMAT Indore 2025 (SA) PYQs

IPMAT Indore 2025

Modern Math
>
Logarithms

Medium

If log3(x21)\log_3(x^2 - 1), log3(2x2+1)\log_3(2x^2 + 1) and log3(6x2+3)\log_3(6x^2 + 3) are the first three terms of an arithmetic progression, then the sum of the next three terms of the progression is

Entered answer:

Correct Answer: 15
In an arithmetic progression, the difference between consecutive terms is constant. Let's call this common difference dd.
d=log3(2x2+1)log3(x21)=log3(2x2+1x21)d = \log_3(2x^2 + 1) - \log_3(x^2 - 1) = \log_3\left(\dfrac{2x^2 + 1}{x^2 - 1}\right)
For the second and third terms:
log3(6x2+3)log3(2x2+1)=log3(6x2+32x2+1)\log_3(6x^2 + 3) - \log_3(2x^2 + 1) = \log_3\left(\dfrac{6x^2 + 3}{2x^2 + 1}\right)
For these to form an arithmetic progression, these differences must be equal:
log3(2x2+1x21)=log3(6x2+32x2+1)\log_3\left(\dfrac{2x^2 + 1}{x^2 - 1}\right) = \log_3\left(\dfrac{6x^2 + 3}{2x^2 + 1}\right)
Since the logarithms are equal, their arguments must be equal:
2x2+1x21=6x2+32x2+1\dfrac{2x^2 + 1}{x^2 - 1} = \dfrac{6x^2 + 3}{2x^2 + 1}
Cross-multiplying: \newline (2x2+1)(2x2+1)=(x21)(6x2+3)(2x^2 + 1)(2x^2 + 1) = (x^2 - 1)(6x^2 + 3)
Expanding and rearranging: \newline 4x4+4x2+1=6x46x2+3x234x^4 + 4x^2 + 1 = 6x^4 - 6x^2 + 3x^2 - 3 \newline 2x4+7x2+4=0-2x^4 + 7x^2 + 4 = 0
Let y=x2y = x^2 to simplify: \newline 2y2+7y+4=0-2y^2 + 7y + 4 = 0
2y27y4=02y^2 - 7y - 4 = 0
Using the quadratic formula:
y=7±49+324=7±814=7±94y = \dfrac{7 \pm \sqrt{49 + 32}}{4} = \dfrac{7 \pm \sqrt{81}}{4} = \dfrac{7 \pm 9}{4}
So y=4y = 4 or y=12y = -\dfrac{1}{2}
Since y=x2y = x^2, and x2x^2 cannot be negative, y=4y = 4 is our only valid solution. \newline Therefore, x2=4x^2 = 4, so x=±2x = \pm 2.
Calculating the common difference using x2=4x^2 = 4:
d=log3(2x2+1x21)=log3(2(4)+141)=log3(93)=log3(3)=1d = \log_3\left(\dfrac{2x^2 + 1}{x^2 - 1}\right) = \log_3\left(\dfrac{2(4) + 1}{4 - 1}\right) = \log_3\left(\dfrac{9}{3}\right) = \log_3(3) = 1
Calculating the first three terms:
a1=log3(x21)=log3(41)=log3(3)=1a_1 = \log_3(x^2 - 1) = \log_3(4 - 1) = \log_3(3) = 1
a2=log3(2x2+1)=log3(2(4)+1)=log3(9)=2a_2 = \log_3(2x^2 + 1) = \log_3(2(4) + 1) = \log_3(9) = 2
a3=log3(6x2+3)=log3(6(4)+3)=log3(27)=3a_3 = \log_3(6x^2 + 3) = \log_3(6(4) + 3) = \log_3(27) = 3
We see the pattern: an=na_n = n
Therefore: \newline a4=4a_4 = 4 \newline a5=5a_5 = 5 \newline a6=6a_6 = 6
The sum of the next three terms = a4+a5+a6=4+5+6=15a_4 + a_5 + a_6 = 4 + 5 + 6 = 15
Alternate Solution
Given: log3(x21),log3(2x2+1),log3(6x2+3)\log _{3}\left(x^{2}-1\right), \log _{3}\left(2 x^{2}+1\right), \log _{3}\left(6 x^{2}+3\right) are in AP.
For AP: 2(middle term) == first term + third term
2log3(2x2+1)=log3(x21)+log3(6x2+3)log3(2x2+1)2=log3[(x21)(6x2+3)](2x2+1)2=(x21)(6x2+3)4x4+4x2+1=6x43x232x47x24=0x2=4, so x=2 Terms: log3(3)=1,log3(9)=2,log3(27)=3 Common difference =1 Next three terms: 4,5,6 Sum =15\begin{aligned} & 2 \log _{3}\left(2 x^{2}+1\right)=\log _{3}\left(x^{2}-1\right)+\log _{3}\left(6 x^{2}+3\right) \\ & \log _{3}\left(2 x^{2}+1\right)^{2}=\log _{3}\left[\left(x^{2}-1\right)\left(6 x^{2}+3\right)\right] \\ & \left(2 x^{2}+1\right)^{2}=\left(x^{2}-1\right)\left(6 x^{2}+3\right) \\ & 4 x^{4}+4 x^{2}+1=6 x^{4}-3 x^{2}-3 \\ & 2 x^{4}-7 x^{2}-4=0 \\ & x^{2}=4, \text { so } x=2 \\ & \text { Terms: } \log _{3}(3)=1, \log _{3}(9)=2, \log _{3}(27)=3 \\ & \text { Common difference }=1 \\ & \text { Next three terms: } 4,5,6 \\ & \text { Sum }=\mathbf{1 5} \end{aligned}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question