IPMAT Indore 2025 (SA) - If A = bmatrix 2 & n \\ 4 & 1 bmatrix such that A^3 = 27 bmatrix 4 & q \\ p & r bmatrix, then p + q + r equals _________ | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2025 (SA) PYQs

IPMAT Indore 2025

Modern Math
>
Matrices & Determinants

Medium

If A=[2n41]A = \begin{bmatrix} 2 & n \\ 4 & 1 \end{bmatrix} such that A3=27[4qpr]A^3 = 27 \begin{bmatrix} 4 & q \\ p & r \end{bmatrix}, then p+q+rp + q + r equals _________

Entered answer:

Correct Answer: 12
A2=[2n41][2n41]=[4+4n3n124n+1]A^2 = \begin{bmatrix} 2 & n \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & n \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 4 + 4n & 3n \\ 12 & 4n + 1 \end{bmatrix}
A3=[4+4n3n124n+1][2n41]=[8+20n7n+4n228+16n16n+1]A^3 = \begin{bmatrix} 4 + 4n & 3n \\ 12 & 4n + 1 \end{bmatrix} \begin{bmatrix} 2 & n \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 8 + 20n & 7n + 4n^2 \\ 28 + 16n & 16n + 1 \end{bmatrix}

Comparing the above A3A^3 value with the given data:
27[4qpr]=[10827q27p27r]=[8+20n7n+4n228+16n16n+1]27\begin{bmatrix} 4 & q \\ p & r \end{bmatrix} = \begin{bmatrix} 108 & 27q \\ 27p & 27r \end{bmatrix}=\boxed{\begin{bmatrix} 8 + 20n & 7n + 4n^2 \\ 28 + 16n & 16n + 1 \end{bmatrix}}
8+20n=108    n=58 + 20n = 108 \implies n = 5
7n+4n2=27q    35+100=27q    q=57n + 4n^2 = 27q \implies 35 + 100 = 27q \implies q = 5
28+16n=27p    28+80=27p    p=428 + 16n = 27p \implies 28 + 80 = 27p \implies p = 4
16n+1=27r    80+1=27r    r=316n + 1 = 27r \implies 80 + 1 = 27r \implies r = 3

Therefore, p+q+r=4+5+3=12p + q + r = 4 + 5 + 3 = 12

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question