IPMAT Indore 2025 (SA) - If the sum of the first 21 terms of the sequence: a/b, ab sqrt(b), ab^2, ab^2 sqrt(b), is a^mb^n, then the value of m+n is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2025 (SA) PYQs

IPMAT Indore 2025

Algebra
>
Progression & Series

Medium

If the sum of the first 2121 terms of the sequence: lnab,lnabb,lnab2,lnab2b,\ln \frac{a}{b}, \ln \frac{a}{b \sqrt{b}}, \ln \frac{a}{b^{2}}, \ln \frac{a}{b^{2} \sqrt{b}}, \ldots is lnambn\ln \frac{a^{m}}{b^{n}}, then the value of m+nm+n is \qquad

Entered answer:

Correct Answer: 147
lnab,lnabb,lnab2,lnab2b,\ln \dfrac{a}{b}, \quad \ln \dfrac{a}{b\sqrt{b}}, \quad \ln \dfrac{a}{b^{2}}, \quad \ln \dfrac{a}{b^{2}\sqrt{b}}, \dots
The power of bb in the denominator follows the pattern: 1,1.5,2,2.5,1, 1.5, 2, 2.5, \dots
This means the exponent increases by 0.50.5 each time.

For the nnth term, the exponent of bb in the denominator would be: 1+(n1)×0.5=0.5n+0.51 + (n-1) \times 0.5 = 0.5n + 0.5
So the nnth term is: lnab0.5n+0.5=lnab0.5(n+1)\ln \dfrac{a}{b^{0.5n+0.5}} = \ln \dfrac{a}{b^{0.5(n+1)}}

To find the sum of the first 21 terms, we have:
i=121lnab0.5(i+1)\sum_{i=1}^{21} \ln \dfrac{a}{b^{0.5(i+1)}}
Using logarithm properties:
lnab0.5(i+1)=lnalnb0.5(i+1)=lna0.5(i+1)lnb\ln \dfrac{a}{b^{0.5(i+1)}} = \ln a - \ln b^{0.5(i+1)} = \ln a - 0.5(i+1)\ln b

Now, we can calculate the sum:
i=121lnab0.5(i+1)=i=121(lna0.5(i+1)lnb)\sum_{i=1}^{21} \ln \dfrac{a}{b^{0.5(i+1)}} = \sum_{i=1}^{21} (\ln a - 0.5(i+1)\ln b)
=21lna0.5lnbi=121(i+1)= 21\ln a - 0.5\ln b \sum_{i=1}^{21} (i+1)
=21lna0.5lnbi=222i= 21\ln a - 0.5\ln b \sum_{i=2}^{22} i

The sum of integers from 2 to 22 is:
(2+22)(222+1)2=24212=252\dfrac{(2+22)(22-2+1)}{2} = \dfrac{24 \cdot 21}{2} = 252

Therefore:
i=121lnab0.5(i+1)=21lna0.5lnb252\sum_{i=1}^{21} \ln \dfrac{a}{b^{0.5(i+1)}} = 21\ln a - 0.5\ln b \cdot 252
=21lna126lnb= 21\ln a - 126\ln b
=lna21lnb126= \ln a^{21} - \ln b^{126}
=lna21b126= \ln \dfrac{a^{21}}{b^{126}}

\newline Comparing with lnambn\ln \dfrac{a^m}{b^n}, we get m=21m = 21 and n=126n = 126
Therefore, m+n=21+126=147m + n = 21 + 126 = 147

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question