Skip to main contentSkip to question navigationSkip to solution

IPMAT Indore 2025 (SA) PYQs

IPMAT Indore 2025

Number System
>
Remainder

Easy

If the polynomial ax2+bx+5ax^2 + bx + 5 leaves a remainder 33 when divided by x1x - 1, and a remainder 22 when divided by x+1x + 1, then 2b4a2b - 4a equals

Entered answer:

Correct Answer: 11
When a polynomial P(x)P(x) is divided by (xk)(x-k), the remainder equals P(k)P(k).
P(x)=ax2+bx+5P(x) = ax^2 + bx + 5
Dividing by (x1)(x-1), the remainder is P(1)=3P(1)=3.
P(1)=a(1)2+b(1)+5=3P(1) = a(1)^2 + b(1) + 5 = 3 \newline a+b+5=3\Rightarrow a + b + 5 = 3 \newline a+b=2\Rightarrow a + b = -2 \quad \rightarrow (1)
Dividing by (x+1)=(x(1))(x+1) = (x-(-1)), the remainder is P(1)=2P(-1)=2.
P(1)=a(1)2+b(1)+5=2P(-1) = a(-1)^2 + b(-1) + 5 = 2 \newline ab+5=2\Rightarrow a - b + 5 = 2 \newline ab=3\Rightarrow a - b = -3 \quad \rightarrow (2)
Adding equations (1) and (2):
2a=52a = -5
a=52a = -\frac{5}{2}
Substituting into equation (1):
52+b=2-\frac{5}{2} + b = -2
b=12b = \frac{1}{2}
Calculating 2b4a2b - 4a:
=2(12)4(52)=2(\frac{1}{2}) - 4(-\frac{5}{2}) \newline =1+10= 1 + 10 \newline =11= 11

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question