IPMAT Indore 2024Modern Math > MediumEntered answer:✅ Correct Answer: 288Related questions:If A=[123a]A = \begin{bmatrix} 1 & 2 \newline 3 & a \end{bmatrix}A=[132a] where aaa is a real number and det (A3−3A2−5A)=0(A ^ 3 - 3A ^ 2 - 5A) = 0(A3−3A2−5A)=0 then one of the values of aaa can beIf A=[100001010]A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]A=100001010, then the absolute value of the determinant of (A9+A6+A3+A)\left(A^{9}+A^{6}+A^{3}+A\right)(A9+A6+A3+A) is __________.Let A,B,CA, B, CA,B,C be three 4×44 \times 44×4 matrices such that det A=5,det B=−3det \ A = 5, det \ B = -3det A=5,det B=−3, and det C=12det \ C = \frac{1}{2}det C=21. Then the detdetdet 2AB−1C3BT2AB^{-1}C^3B^T2AB−1C3BT is