IPMAT Indore 2020Modern Math > HardEntered answer:✅ Correct Answer: 1Related questions:If A=[10120]A=\left[\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 0\end{array}\right]A=[12100] then A2022A^{2022}A2022 isIf A,BA, BA,B and A+BA + BA+B are non singular matrices and AB=BAAB = BAAB=BA then 2A−B−A(A+B)−1A+B(A+B)−1B2A - B - A(A + B)^{-1}A + B(A + B)^{-1} B2A−B−A(A+B)−1A+B(A+B)−1B equalsIf A=[x1x27y1y2y3z183]A = \begin{bmatrix} x_1 & x_2 & 7 \\ y_1 & y_2 & y_3 \\ z_1 & 8 & 3 \end{bmatrix}A=x1y1z1x2y287y33 is a matrix such that the sum of all three elements along any row, column or diagonal are equal to each other, then the value of determinant of A is: