IPMAT Indore 2019Modern Math > MediumEntered answer:✅ Correct Answer: 1Related questions:If A=[123a]A = \begin{bmatrix} 1 & 2 \newline 3 & a \end{bmatrix}A=[132a] where aaa is a real number and det (A3−3A2−5A)=0(A ^ 3 - 3A ^ 2 - 5A) = 0(A3−3A2−5A)=0 then one of the values of aaa can beIf A=[2n41]A = \begin{bmatrix} 2 & n \\ 4 & 1 \end{bmatrix}A=[24n1] such that A3=27[4qpr]A^3 = 27 \begin{bmatrix} 4 & q \\ p & r \end{bmatrix}A3=27[4pqr], then p+q+rp + q + rp+q+r equals _________If A=[100001010]A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]A=100001010, then the absolute value of the determinant of (A9+A6+A3+A)\left(A^{9}+A^{6}+A^{3}+A\right)(A9+A6+A3+A) is __________.