IPMAT Indore 2023 (MCQ) - In a triangle ABC, let D be the midpoint of BC, and AM be the altitude on BC. If the lengths of AB, BC and CA are in the ratio of 2:4:3, then the ratio of the lengths of BM and AD would be | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2023 (MCQ) PYQs

IPMAT Indore 2023

Geometry
>
Triangles

Medium

In a triangle ABC, let D be the midpoint of BC, and AM be the altitude on BC. If the lengths of AB, BC and CA are in the ratio of 2:4:3, then the ratio of the lengths of BM and AD would be

Correct Option: 1
Let AB = 2k, BC = 4k, and CA = 3k, where k is some positive constant. \newline
\newline Place B at the origin (0,0) and C at (4k,0) so BC = 4k along the x-axis.
Since D is the midpoint of BC, D = (2k,0). \newline
\newline Let's find the coordinates of A. Since AB = 2k and AC = 3k, if A = (x,y) where y > 0, then:
From the Pythagorean theorem:
AB2=x2+y2=(2k)2=4k2AB^2 = x^2 + y^2 = (2k)^2 = 4k^2
AC2=(x4k)2+y2=(3k)2=9k2AC^2 = (x-4k)^2 + y^2 = (3k)^2 = 9k^2
From AB2=4k2AB^2 = 4k^2:
x2+y2=4k2x^2 + y^2 = 4k^2
From AC2=9k2AC^2 = 9k^2:
(x4k)2+y2=9k2(x-4k)^2 + y^2 = 9k^2
x28kx+16k2+y2=9k2x^2 - 8kx + 16k^2 + y^2 = 9k^2
Substituting y2=4k2x2y^2 = 4k^2 - x^2:
x28kx+16k2+4k2x2=9k2x^2 - 8kx + 16k^2 + 4k^2 - x^2 = 9k^2
8kx+20k2=9k2-8kx + 20k^2 = 9k^2
8kx=11k2-8kx = -11k^2
x=11k28k=11k8x = \dfrac{-11k^2}{-8k} = \dfrac{11k}{8}
Now for y:
y2=4k2x2=4k2(11k8)2y^2 = 4k^2 - x^2 = 4k^2 - (\dfrac{11k}{8})^2
y2=4k2121k264y^2 = 4k^2 - \dfrac{121k^2}{64}
y2=256k2121k264y^2 = \dfrac{256k^2 - 121k^2}{64}
y2=135k264y^2 = \dfrac{135k^2}{64}
y=135k8y = \dfrac{\sqrt{135}k}{8}
So A=(11k8,135k8)A = (\dfrac{11k}{8}, \dfrac{\sqrt{135}k}{8}) \newline
\newline Since AM is the altitude to BC, M lies on BC with coordinates M = (m,0), where AM ⊥ BC.
This means (AM)(CB)=0(A-M) \cdot (C-B) = 0
(AM)=(11k8m,135k8)(A-M) = (\dfrac{11k}{8} - m, \dfrac{\sqrt{135}k}{8})
(CB)=(4k,0)(C-B) = (4k, 0)
Their dot product:
(11k8m)(4k)+(135k8)(0)=0(\dfrac{11k}{8} - m)(4k) + (\dfrac{\sqrt{135}k}{8})(0) = 0
11k224km=0\dfrac{11k^2}{2} - 4km = 0
m=11k8m = \dfrac{11k}{8}
So M=(11k8,0)M = (\dfrac{11k}{8}, 0) \newline
\newline Calculating BM and AD:
BM=MB=(11k8,0)(0,0)=11k8BM = |M - B| = |(\dfrac{11k}{8}, 0) - (0, 0)| = \dfrac{11k}{8}
AD=AD=(11k8,135k8)(2k,0)AD = |A - D| = |(\dfrac{11k}{8}, \dfrac{\sqrt{135}k}{8}) - (2k, 0)|
AD=(11k82k)2+(135k8)2AD = \sqrt{(\dfrac{11k}{8} - 2k)^2 + (\dfrac{\sqrt{135}k}{8})^2}
AD=(11k16k8)2+(135k8)2AD = \sqrt{(\dfrac{11k - 16k}{8})^2 + (\dfrac{\sqrt{135}k}{8})^2}
AD=(5k8)2+(135k8)2AD = \sqrt{(\dfrac{-5k}{8})^2 + (\dfrac{\sqrt{135}k}{8})^2}
AD=25k264+135k264AD = \sqrt{\dfrac{25k^2}{64} + \dfrac{135k^2}{64}}
AD=160k264AD = \sqrt{\dfrac{160k^2}{64}}
AD=k1608=k16108=4k108=k102AD = \dfrac{k\sqrt{160}}{8} = \dfrac{k\sqrt{16 \cdot 10}}{8} = \dfrac{4k\sqrt{10}}{8} = \dfrac{k\sqrt{10}}{2} \newline
\newline The ratio of BM to AD:
BM:AD=11k8:k102BM : AD = \dfrac{11k}{8} : \dfrac{k\sqrt{10}}{2}
BM:AD=11k8:k102=11k82k10=1128<divstyle="height:10px"></div>10=22810=11410BM : AD = \dfrac{11k}{8} : \dfrac{k\sqrt{10}}{2} = \dfrac{11k}{8} \cdot \dfrac{2}{k\sqrt{10}} = \dfrac{11 \cdot 2}{8 \cdot<div style="height: 10px"></div>\sqrt{10}} = \dfrac{22}{8\sqrt{10}} = \dfrac{11}{4\sqrt{10}}
Therefore, the ratio of BM to AD is 11410\dfrac{11}{4\sqrt{10}} or 111040\dfrac{11\sqrt{10}}{40}.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question