IPMAT Indore 2023Algebra > Mediumb1a1,b2a2,b3a3\dfrac{b_{1}}{a_{1}}, \dfrac{b_{2}}{a_{2}}, \dfrac{b_{3}}{a_{3}}a1b1,a2b2,a3b3 are in geometric progressionb1,b2,b3b_{1}, b_{2}, b_{3}b1,b2,b3 are in geometric progressionb1,b2,b3b_{1}, b_{2}, b_{3}b1,b2,b3 are in arithmetic progressionb1a1,b2a2,b3a3\dfrac{b_{1}}{a_{1}}, \dfrac{b_{2}}{a_{2}}, \dfrac{b_{3}}{a_{3}}a1b1,a2b2,a3b3 are in arithmetic progression✅ Correct Option: 4Related questions:IPMAT Indore 2021Let SnS_nSn be sum of the first nnn terms of an A.P. If S5=S9S_5 = S_9S5=S9, what is the ratio of a3:a5a_3 : a_5a3:a5IPMAT Indore 2025Let S1={100,105,110,115,...}S_1 = \{100, 105, 110, 115, ... \}S1={100,105,110,115,...} and S2={100,95,90,85,...}S_2 = \{100, 95, 90, 85, ... \}S2={100,95,90,85,...} be two series in arithmetic progression. If aka_kak and bkb_kbk are the kkk-th terms of S1S_1S1 and S2S_2S2, respectively, then ∑k=120akbk\sum_{k=1}^{20} a_k b_k∑k=120akbk equals __________.IPMAT Indore 2019If (1+x−2x2)6=A0+∑r=112Arxr(1 + x - 2x^2)^6 = A_0 + \sum_{r=1}^{12} A_r x^r(1+x−2x2)6=A0+∑r=112Arxr, then the value of A2+A4+A6+⋯+A12A_2 + A_4 + A_6 + \cdots + A_{12}A2+A4+A6+⋯+A12 is