IPMAT IndoreAlgebra > Mediumb1a1,b2a2,b3a3\dfrac{b_{1}}{a_{1}}, \dfrac{b_{2}}{a_{2}}, \dfrac{b_{3}}{a_{3}}a1b1,a2b2,a3b3 are in geometric progressionb1,b2,b3b_{1}, b_{2}, b_{3}b1,b2,b3 are in geometric progressionb1,b2,b3b_{1}, b_{2}, b_{3}b1,b2,b3 are in arithmetic progressionb1a1,b2a2,b3a3\dfrac{b_{1}}{a_{1}}, \dfrac{b_{2}}{a_{2}}, \dfrac{b_{3}}{a_{3}}a1b1,a2b2,a3b3 are in arithmetic progression✅ Correct Option: 4Related questions:IPMAT Indore 2019Let α,β\alpha, \betaα,β be the roots of x2−x+p=0x^2 - x + p = 0x2−x+p=0 and γ,δ\gamma, \deltaγ,δ be the roots of x2−4x+q=0x^2 - 4x + q = 0x2−4x+q=0 where p and q are integers. If α,β,γ,δ\alpha, \beta, \gamma, \deltaα,β,γ,δ are in geometric progression then p+qp + qp+q isIPMAT Indore 2025If the sum of the first 212121 terms of the sequence: lnab,lnabb,lnab2,lnab2b,…\ln \frac{a}{b}, \ln \frac{a}{b \sqrt{b}}, \ln \frac{a}{b^{2}}, \ln \frac{a}{b^{2} \sqrt{b}}, \ldotslnba,lnbba,lnb2a,lnb2ba,… is lnambn\ln \frac{a^{m}}{b^{n}}lnbnam, then the value of m+nm+nm+n is \qquadIPMAT Indore 2022The sum of the first 15 terms in an arithmetic progression is 200, while the sum of the next 15 terms is 350. Then the common difference is