IPMAT IndoreAlgebra > Easy16152526✅ Correct Option: 1Related questions:IPMAT Indore 2022If f(x2+f(y))=xf(x)+yf\left(x^{2}+f(y)\right)=x f(x)+yf(x2+f(y))=xf(x)+y for all non-negative integers xxx and yyy, then the value of [f(0)]2+f(0)[f(0)]^{2}+f(0)[f(0)]2+f(0) equals _________.IPMAT Indore 2023If f(1)=1f(1) = 1f(1)=1 and f(n)=3n−f(n−1)f(n) = 3n - f(n - 1)f(n)=3n−f(n−1) for all integers n>1n > 1n>1 , then the value of f(2023)f(2023)f(2023) isIPMAT Indore 2021Suppose that a real-valued function f(x)f(x)f(x) of real numbers satisfies f(x+xy)=f(x)+f(xyf(x + xy) = f(x) + f(xyf(x+xy)=f(x)+f(xy) for all real x,y,x, y,x,y, and that f(2020)=1f(2020) = 1f(2020)=1. Compute f(2021)f(2021)f(2021).