IPMAT Indore 2019Algebra > MediumEntered answer:✅ Correct Answer: 4Related questions:If the sum of the first 212121 terms of the sequence: lnab,lnabb,lnab2,lnab2b,…\ln \frac{a}{b}, \ln \frac{a}{b \sqrt{b}}, \ln \frac{a}{b^{2}}, \ln \frac{a}{b^{2} \sqrt{b}}, \ldotslnba,lnbba,lnb2a,lnb2ba,… is lnambn\ln \frac{a^{m}}{b^{n}}lnbnam, then the value of m+nm+nm+n is \qquadLet S1={100,105,110,115,...}S_1 = \{100, 105, 110, 115, ... \}S1={100,105,110,115,...} and S2={100,95,90,85,...}S_2 = \{100, 95, 90, 85, ... \}S2={100,95,90,85,...} be two series in arithmetic progression. If aka_kak and bkb_kbk are the kkk-th terms of S1S_1S1 and S2S_2S2, respectively, then ∑k=120akbk\sum_{k=1}^{20} a_k b_k∑k=120akbk equals __________.Let α,β\alpha, \betaα,β be the roots of x2−x+p=0x^2 - x + p = 0x2−x+p=0 and γ,δ\gamma, \deltaγ,δ be the roots of x2−4x+q=0x^2 - 4x + q = 0x2−4x+q=0 where p and q are integers. If α,β,γ,δ\alpha, \beta, \gamma, \deltaα,β,γ,δ are in geometric progression then p+qp + qp+q is