IPMAT Rohtak 2019Algebra > Medium(−∞,−2)∪(2,∞)(-\infty, -2) \cup (2, \infty)(−∞,−2)∪(2,∞)(−∞,−2)∪(2,∞)(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)(−∞,−2)∪(2,∞)(−∞,−1)∪(1,∞)(-\infty, -1) \cup (1, \infty)(−∞,−1)∪(1,∞)(2,∞)(\sqrt{2}, \infty)(2,∞)✅ Correct Option: 2Related questions:IPMAT Rohtak 2019Match List I with List II. Choose the correct answer from the options given below:IPMAT Rohtak 2019If the minimum value of f(x)=x2+2bx+2c2f(x) = x^2 + 2bx + 2c^2f(x)=x2+2bx+2c2 is greater than the maximum value of g(x)=−x2−2cx+b2g(x) = -x^2 - 2cx + b^2g(x)=−x2−2cx+b2, then for real value of x.IPMAT Rohtak 2019If α\alphaα and β\betaβ are the roots of the equation ax2+bx+c=0a x^{2}+b x+c=0ax2+bx+c=0, then value of 1aα+b+1aβ+b\frac{1}{a \alpha+b}+\frac{1}{a \beta+b}aα+b1+aβ+b1 is :