IPMAT Indore 2022Geometry > HardEntered answer:✅ Correct Answer: 100Related questions:If sinθ+cosθ=msin \theta + cos \theta = msinθ+cosθ=m, then sin6θ+cos6θsin^6 \theta + cos^6 \thetasin6θ+cos6θ equalsFor 0<θ<π40\lt\theta\lt\frac{\pi}{4}0<θ<4π, let a=((sinθ)sinθ)(log2cosθ),b=((cosθ)sinθ)(log2sinθ),c=((sinθ)cosθ)(log2cosθ)a=\left((\sin \theta)^{\sin \theta}\right)\left(\log _{2} \cos \theta\right), b=\left((\cos \theta)^{\sin \theta}\right)\left(\log _{2} \sin \theta\right), c=\left((\sin \theta)^{\cos \theta}\right)\left(\log _{2} \cos \theta\right)a=((sinθ)sinθ)(log2cosθ),b=((cosθ)sinθ)(log2sinθ),c=((sinθ)cosθ)(log2cosθ) and d=((sinθ)sinθ)(log2sinθ)d=\left((\sin \theta)^{\sin \theta}\right)\left(\log _{2} \sin \theta\right)d=((sinθ)sinθ)(log2sinθ). Then, the median value in the sequence a,b,c,da, b, c, da,b,c,d isThe value of cos2(π8)+cos2(3π8)+cos2(5π8)+cos2(7π8)\cos^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{3\pi}{8}\right) + \cos^2\left(\frac{5\pi}{8}\right) + \cos^2\left(\frac{7\pi}{8}\right)cos2(8π)+cos2(83π)+cos2(85π)+cos2(87π) is