IPMAT Indore 2022 (SA) - If + =sqrt(2)sqrt(3) and + =1sqrt(3), then the value of (20 (-/2))^2 is _________. | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2022 (SA) PYQs

IPMAT Indore 2022

Geometry
>
Trigonometry

Hard

If sinα+sinβ=23\sin \alpha+\sin \beta=\frac{\sqrt{2}}{\sqrt{3}} and cosα+cosβ=13\cos \alpha+\cos \beta=\frac{1}{\sqrt{3}}, then the value of (20cos(αβ2))2\left(20 \cos \left(\frac{\alpha-\beta}{2}\right)\right)^{2} is _________.

Entered answer:

Correct Answer: 100
We know: \newline sinα+sinβ=23\sin \alpha + \sin \beta = \dfrac{\sqrt{2}}{\sqrt{3}} \newline cosα+cosβ=13\cos \alpha + \cos \beta = \dfrac{1}{\sqrt{3}}
Using trigonometric identities: \newline sinα+sinβ=2sin(α+β2)cos(αβ2)\sin \alpha + \sin \beta = 2\sin\left(\dfrac{\alpha+\beta}{2}\right)\cos\left(\dfrac{\alpha-\beta}{2}\right)
cosα+cosβ=2cos(α+β2)cos(αβ2)\cos \alpha + \cos \beta = 2\cos\left(\dfrac{\alpha+\beta}{2}\right)\cos\left(\dfrac{\alpha-\beta}{2}\right)
This gives us: \newline 2sin(α+β2)cos(αβ2)=232\sin\left(\dfrac{\alpha+\beta}{2}\right)\cos\left(\dfrac{\alpha-\beta}{2}\right) = \dfrac{\sqrt{2}}{\sqrt{3}}
2cos(α+β2)cos(αβ2)=132\cos\left(\dfrac{\alpha+\beta}{2}\right)\cos\left(\dfrac{\alpha-\beta}{2}\right) = \dfrac{1}{\sqrt{3}} \newline
\newline Dividing these equations:
tan(α+β2)=sin(α+β2)cos(α+β2)=2313=2\tan\left(\dfrac{\alpha+\beta}{2}\right) = \dfrac{\sin\left(\dfrac{\alpha+\beta}{2}\right)}{\cos\left(\dfrac{\alpha+\beta}{2}\right)} = \dfrac{\dfrac{\sqrt{2}}{\sqrt{3}}}{\dfrac{1}{\sqrt{3}}} = \sqrt{2}
From the second equation: \newline cos(α+β2)cos(αβ2)=123\cos\left(\dfrac{\alpha+\beta}{2}\right)\cos\left(\dfrac{\alpha-\beta}{2}\right) = \dfrac{1}{2\sqrt{3}} \newline
\newline Since tan(α+β2)=2\tan\left(\dfrac{\alpha+\beta}{2}\right) = \sqrt{2}, we get:
cos(α+β2)=11+tan2(α+β2)=13\cos\left(\dfrac{\alpha+\beta}{2}\right) = \dfrac{1}{\sqrt{1+\tan^2\left(\dfrac{\alpha+\beta}{2}\right)}} = \dfrac{1}{\sqrt{3}}
Substituting:
13cos(αβ2)=123\dfrac{1}{\sqrt{3}} \cdot \cos\left(\dfrac{\alpha-\beta}{2}\right) = \dfrac{1}{2\sqrt{3}}
cos(αβ2)=12\cos\left(\dfrac{\alpha-\beta}{2}\right) = \dfrac{1}{2} \newline
\newline Therefore:
(20cos(αβ2))2=(2012)2=102=100\left(20 \cos\left(\dfrac{\alpha-\beta}{2}\right)\right)^2 = \left(20 \cdot \dfrac{1}{2}\right)^2 = 10^2 = 100

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question