IPMAT Indore 2021Algebra > Medium9:59:59:55:95:95:93:53:53:55:35:35:3✅ Correct Option: 1Related questions:Let S1={100,105,110,115,...}S_1 = \{100, 105, 110, 115, ... \}S1={100,105,110,115,...} and S2={100,95,90,85,...}S_2 = \{100, 95, 90, 85, ... \}S2={100,95,90,85,...} be two series in arithmetic progression. If aka_kak and bkb_kbk are the kkk-th terms of S1S_1S1 and S2S_2S2, respectively, then ∑k=120akbk\sum_{k=1}^{20} a_k b_k∑k=120akbk equals __________.Let a1,a2,a3a_{1}, a_{2}, a_{3}a1,a2,a3 be three distinct real numbers in geometric progression. If the equations a1x2+2a2x+a3=0a_{1} x ^ 2 + 2a_{2}x + a_{3} = 0a1x2+2a2x+a3=0 and b1x2+2b2x+b3=0b_{1} x ^ 2 + 2b_{2}x + b_{3} = 0b1x2+2b2x+b3=0 have a common root, then which of the following is necessarily true?If f(n)=1+2+3+⋯+(n+1)f(n)= 1 + 2 + 3 +\cdots+(n+1) f(n)=1+2+3+⋯+(n+1) and g(n)=∑k=1k=n1f(k)g(n)= \sum_{k=1}^{k=n} \dfrac{1}{f(k)}g(n)=∑k=1k=nf(k)1, then the least value of nnn for which g(n)g(n)g(n) exceeds the value 99100\dfrac{99}{100}10099 is: