IPMAT IndoreAlgebra > Hardπ28\frac{\pi^2}{8}8π2π216\frac{\pi^2}{16}16π2π212\frac{\pi^2}{12}12π2π236\frac{\pi^2}{36}36π2✅ Correct Option: 1Related questions:IPMAT Indore 2025If the sum of the first 212121 terms of the sequence: lnab,lnabb,lnab2,lnab2b,…\ln \frac{a}{b}, \ln \frac{a}{b \sqrt{b}}, \ln \frac{a}{b^{2}}, \ln \frac{a}{b^{2} \sqrt{b}}, \ldotslnba,lnbba,lnb2a,lnb2ba,… is lnambn\ln \frac{a^{m}}{b^{n}}lnbnam, then the value of m+nm+nm+n is \qquadIPMAT Indore 2019The number of terms common to both the arithmetic progressions 2,5,8,11,...,1792, 5, 8, 11, ..., 1792,5,8,11,...,179 and 3,5,7,9,...,1013, 5, 7, 9, ..., 1013,5,7,9,...,101 isIPMAT Indore 2021The sum up to 101010 terms of the series 1⋅3+5⋅7+9⋅11+...1 \cdot 3 + 5 \cdot 7 + 9 \cdot 11 + ...1⋅3+5⋅7+9⋅11+... is