IPMAT Indore 2020Algebra > Hardπ28\frac{\pi^2}{8}8π2π216\frac{\pi^2}{16}16π2π212\frac{\pi^2}{12}12π2π236\frac{\pi^2}{36}36π2✅ Correct Option: 1Related questions:It is given that the sequence {xnx_nxn} satisfies x1=0,xn+1=xn+1+2√(1+xn)x_1 = 0, x_{n+1} = x_n + 1 + 2√(1+x_n)x1=0,xn+1=xn+1+2√(1+xn) for n=1,2,...n = 1,2,...n=1,2,... Then x31x_{31}x31 is _______If f(n)=1+2+3+⋯+(n+1)f(n)= 1 + 2 + 3 +\cdots+(n+1) f(n)=1+2+3+⋯+(n+1) and g(n)=∑k=1k=n1f(k)g(n)= \sum_{k=1}^{k=n} \dfrac{1}{f(k)}g(n)=∑k=1k=nf(k)1, then the least value of nnn for which g(n)g(n)g(n) exceeds the value 99100\dfrac{99}{100}10099 is:Let SnS_nSn be sum of the first nnn terms of an A.P. If S5=S9S_5 = S_9S5=S9, what is the ratio of a3:a5a_3 : a_5a3:a5