IPMAT IndoreModern Math > HardEntered answer:✅ Correct Answer: 10Related questions:IPMAT Indore 2022Suppose a,ba, ba,b and ccc are integers such that a>b>c>0a>b>c>0a>b>c>0, and A=[abcbcacab]A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]A=abcbcacab. Then the value of the determinant of AAA isIPMAT Indore 2020Suppose ∣aa2a3−1bb2b3−1cc2c3−1∣=0\left|\begin{array}{lll}a & a^{2} & a^{3}-1 \\ b & b^{2} & b^{3}-1 \\ c & c^{2} & c^{3}-1\end{array}\right|=0abca2b2c2a3−1b3−1c3−1=0, where a,b\mathrm{a}, \mathrm{b}a,b and c\mathrm{c}c are distinct real numbers. If a=3{a}=3a=3, then the value of abcabcabc is:IPMAT Indore 2023If A=[123a]A = \begin{bmatrix} 1 & 2 \newline 3 & a \end{bmatrix}A=[132a] where aaa is a real number and det (A3−3A2−5A)=0(A ^ 3 - 3A ^ 2 - 5A) = 0(A3−3A2−5A)=0 then one of the values of aaa can be