IPMAT Indore 2019Modern Math > HardEntered answer:✅ Correct Answer: 10Related questions:If A=[100001010]A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]A=100001010, then the absolute value of the determinant of (A9+A6+A3+A)\left(A^{9}+A^{6}+A^{3}+A\right)(A9+A6+A3+A) is __________.Suppose a,ba, ba,b and ccc are integers such that a>b>c>0a>b>c>0a>b>c>0, and A=[abcbcacab]A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]A=abcbcacab. Then the value of the determinant of AAA isIf AAA is a 3×33 \times 33×3 non-zero matrix such that A2=0A^2 = 0A2=0 then the determinant of (I+A)50−50A(I + A)^{50} - 50A(I+A)50−50A is equal to