IPMAT Indore 2019Modern Math > MediumEntered answer:✅ Correct Answer: 3Related questions:If log25[5log3(1+log3(1+2log2x))]=12\log_{25} [5 \log_3 (1+\log_3(1+2\log_2x))] = \frac12log25[5log3(1+log3(1+2log2x))]=21 then xxx is:The set of all values of xxx satisfying the inequality log(x+1x)[log2(x−1x+2)]>0\log _{\left(x+\frac{1}{x}\right)}\left[\log _{2}\left(\frac{x-1}{x+2}\right)\right]>0log(x+x1)[log2(x+2x−1)]>0 isIf 4log2x−4x+9log3y−16y+68=04^{\log_2{x}} - 4x + 9^{\log_3{y}} - 16y + 68 = 04log2x−4x+9log3y−16y+68=0, then y−xy - xy−x equals: