IPMAT Indore 2023Algebra > Easy(−∞,−1)(-\infty, -1)(−∞,−1) U (−12,0)(-\dfrac{1}{2}, 0)(−21,0) U (1,+∞)(1, +\infty)(1,+∞)(−1,−12)(-1, -\dfrac{1}{2})(−1,−21) U (1,+∞)(1,+\infty)(1,+∞)(−1,0)(-1, 0)(−1,0) U (1,+∞)(1,+\infty)(1,+∞)(−1,−12)(-1, -\dfrac{1}{2})(−1,−21) U (0,+∞)(0,+\infty)(0,+∞)✅ Correct Option: 2Related questions:The smallest possible number of students in a class if the girls in the class are less than 50% but more than 48% isThe set of values of xxx which satisfy the inequality 0.7(2x2−3x+4)<0.3430.7^{(2x^2 - 3x + 4)} < 0.3430.7(2x2−3x+4)<0.343 isConsider the following statements: (i) When (0<x<1)(0 < x < 1)(0<x<1), then (11+x<1−x+x2)(\frac{1}{1+x} < 1 - x + x^2)(1+x1<1−x+x2) (ii) When (0<x<1)(0 < x < 1)(0<x<1), then (11+x>1−x+x2)(\frac{1}{1+x} > 1 - x + x^2)(1+x1>1−x+x2) (iii) When (−1<x<0)(-1 < x < 0)(−1<x<0), then (11+x<1−x+x2)(\frac{1}{1+x} < 1 - x + x^2)(1+x1<1−x+x2) (iv) When (−1<x<0)(-1 < x < 0)(−1<x<0), then (11+x>1−x+x2)(\frac{1}{1+x} > 1 - x + x^2)(1+x1>1−x+x2) Then the correct statements are: