IPMAT Indore 2020Geometry > Hard11132\frac{3}{2}2322294\frac{9}{4}49✅ Correct Option: 3Related questions:The number of pairs (x,y)(x, y)(x,y) satisfying the equation sinx+siny=sin(x+y)\sin x + \sin y = \sin(x + y)sinx+siny=sin(x+y) and ∣x∣+∣y∣=1|x| + |y| = 1∣x∣+∣y∣=1 isIf sinα+sinβ=23\sin \alpha+\sin \beta=\frac{\sqrt{2}}{\sqrt{3}}sinα+sinβ=32 and cosα+cosβ=13\cos \alpha+\cos \beta=\frac{1}{\sqrt{3}}cosα+cosβ=31, then the value of (20cos(α−β2))2\left(20 \cos \left(\frac{\alpha-\beta}{2}\right)\right)^{2}(20cos(2α−β))2 is _________.If cosαcos \alphacosα + cosβcos \betacosβ = 1 then the maximum value of sinα−sinβsin \alpha - sin \betasinα−sinβ is