IIM-K (BMSAT) 2025Modern Math > Mediumlog8(16x35)\log_{8} (\frac{16x}{35})log8(3516x)log2(5x2)\log_{2} (\frac{5x}{2})log2(25x)logx(12835)\log_{x} (\frac{128}{35})logx(35128)logx(140320)\log_{x} (\frac{1}{40320})logx(403201)✅ Correct Option: 3Related questions:The set of real values of xxx for which the inequality log278≤log3x<91log23\log _{27} 8 \leq \log _{3} x \lt 9^{\frac{1}{\log _{2} 3}}log278≤log3x<9log231 holds isSuppose that log2[log3(log4a)]=log3[log4(log2b)]=log4[log2(log3c)]=0\log_2[\log_3 (\log_4a)] = \log_3 [\log_4 (\log_2b)] = \log_4 [\log_2 (\log_3c)] = 0log2[log3(log4a)]=log3[log4(log2b)]=log4[log2(log3c)]=0 then the value of a+b+ca + b + ca+b+c isIf log3(x2−1)\log_3(x^2 - 1)log3(x2−1), log3(2x2+1)\log_3(2x^2 + 1)log3(2x2+1) and log3(6x2+3)\log_3(6x^2 + 3)log3(6x2+3) are the first three terms of an arithmetic progression, then the sum of the next three terms of the progression is