IIM-K (BMSAT) 2025Modern Math > Mediumlog8(16x35)\log_{8} (\frac{16x}{35})log8(3516x)log2(5x2)\log_{2} (\frac{5x}{2})log2(25x)logx(12835)\log_{x} (\frac{128}{35})logx(35128)logx(140320)\log_{x} (\frac{1}{40320})logx(403201)✅ Correct Option: 3Related questions:If log4x=a\log_4 x = alog4x=a and log25x=b\log_{25} x = blog25x=b, then logx10\log_x 10logx10 isSuppose that log2[log3(log4a)]=log3[log4(log2b)]=log4[log2(log3c)]=0\log_2[\log_3 (\log_4a)] = \log_3 [\log_4 (\log_2b)] = \log_4 [\log_2 (\log_3c)] = 0log2[log3(log4a)]=log3[log4(log2b)]=log4[log2(log3c)]=0 then the value of a+b+ca + b + ca+b+c isIf y>0,y > 0,y>0, and logy(x)=4,log10y(25x)=2\log_{y}(x) = 4, \log_{10y} (25x) = 2logy(x)=4,log10y(25x)=2 hold, what is y?y?y?