IIM-K (BMSAT) 2025Modern Math > EasyNone of these4510✅ Correct Option: 1Related questions:The inequality logaf(x)<logag(x)\log_{a}{f(x)} < \log_{a}{g(x)}logaf(x)<logag(x) implies thatIf log(cosx)(sinx)+log(sinx)(cosx)=2,\log_{(cos x)}(sin x) + \log_{(sin x)}(cos x) = 2,log(cosx)(sinx)+log(sinx)(cosx)=2, then the value of xxx isThe inequality log23x−12−x<1\log_{2} \frac{3x - 1}{2 - x} < 1log22−x3x−1<1 holds true for