JIPMATGeometry > Easy30 cm30 \mathrm{~cm}30 cm40 cm40 \mathrm{~cm}40 cm50 cm50 \mathrm{~cm}50 cm60 cm60 \mathrm{~cm}60 cm✅ Correct Option: 4Related questions:The sides of four triangles are given below. Which of them forms a right triangle ? (A) 20 cm,22 cm,24 cm20 \mathrm{~cm}, 22 \mathrm{~cm}, 24 \mathrm{~cm}20 cm,22 cm,24 cm (B) 15 cm,32 cm,37 cm15 \mathrm{~cm}, 32 \mathrm{~cm}, 37 \mathrm{~cm}15 cm,32 cm,37 cm (C) 11 cm,60 cm,61 cm11 \mathrm{~cm}, 60 \mathrm{~cm}, 61 \mathrm{~cm}11 cm,60 cm,61 cm (D) 6 cm,8 cm,10 cm6 \mathrm{~cm}, 8 \mathrm{~cm}, 10 \mathrm{~cm}6 cm,8 cm,10 cmABC is right angled triangle at C. Let BC = a, CA = b and AB = c and let p be the length of perpendicular from C on AB, then cp is equal toGiven below are two statements: Statement I: In △ABC,AB=63 cm,AC=12 cm\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}△ABC,AB=63 cm,AC=12 cm and BC=6 cmB C=6 \mathrm{~cm}BC=6 cm, then angle B=90∘B=90^{\circ}B=90∘ Statement II: In △ABC\triangle A B C△ABC, is an isosceles with AC=BCA C=B CAC=BC. If AB2=2AC2A B^{2}=2 AC^{2}AB2=2AC2, Then angle C=90∘C=90^{\circ}C=90∘ In the light of the above statement, choose the correct answer form the question below.