IPMAT Rohtak 2020Algebra > Medium2134✅ Correct Option: 2Related questions:A new sequence is obtained from the sequence of positive integers (1,2,3,…)(1,2,3, \ldots)(1,2,3,…) by deleting all the perfect squares. Then the 2022nd 2022^{\text {nd }}2022nd term of the new sequence is ________.The value of (19−8−18−7+17−6−16−5+15−4)(\frac{1}{\sqrt{9}-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-\sqrt{4}})(9−81−8−71+7−61−6−51+5−41) isThe sum up to 101010 terms of the series 1⋅3+5⋅7+9⋅11+...1 \cdot 3 + 5 \cdot 7 + 9 \cdot 11 + ...1⋅3+5⋅7+9⋅11+... is