IIM-B (BBA-DBE) 2025 #1Algebra > Hard67\frac{6}{7}762732\frac{27}{32}322727\frac{2}{7}7258\frac{5}{8}85✅ Correct Option: 3Related questions:The sum of a given infinite geometric progression is 80 and the sum of its first two terms is 35. Then the value of nnn for which the sum of its first nnn terms is closest to 100, isIf (1+x−2x2)6=A0+∑r=112Arxr(1 + x - 2x^2)^6 = A_0 + \sum_{r=1}^{12} A_r x^r(1+x−2x2)6=A0+∑r=112Arxr, then the value of A2+A4+A6+⋯+A12A_2 + A_4 + A_6 + \cdots + A_{12}A2+A4+A6+⋯+A12 isGiven that 1+122+132+142+...=π261 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + ... = \frac{\pi^2}{6}1+221+321+421+...=6π2, the value of 1+132+152+172+...1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + ...1+321+521+721+... is