JIPMATGeometry > Conceptual0123✅ Correct Option: 3Related questions:Given below are two statements: Statement I: cot30∘+1cot30∘−1=2(cos30∘+1)\frac{\cot 30^{\circ}+1}{\cot 30^{\circ}-1}=2\left(\cos 30^{\circ}+1\right)cot30∘−1cot30∘+1=2(cos30∘+1) Statement II : 2sin45∘cos45∘−tan45∘cot45∘=02 \sin 45^{\circ} \cos 45^{\circ}-\tan 45^{\circ} \cot 45^{\circ}=02sin45∘cos45∘−tan45∘cot45∘=0If sinθ+cosθsinθ−cosθ=3\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = 3sinθ−cosθsinθ+cosθ=3, then value of sin4θ−cos4θ\sin^4\theta - \cos^4\thetasin4θ−cos4θ isWhich of the following trigonometric identities are true? sin2(41∘)+sin2(49∘)=1sin2(60∘)−2tan(45∘)−cos2(30∘)=−1sin2(θ)+11+tan2(θ)=1\begin{aligned} & \sin ^2\left(41^{\circ}\right)+\sin ^2\left(49^{\circ}\right)=1 \\ & \sin ^2\left(60^{\circ}\right)-2 \tan \left(45^{\circ}\right)-\cos ^2\left(30^{\circ}\right)=-1 \\ & \sin ^2(\theta)+\frac{1}{1+\tan ^2(\theta)}=1 \end{aligned}sin2(41∘)+sin2(49∘)=1sin2(60∘)−2tan(45∘)−cos2(30∘)=−1sin2(θ)+1+tan2(θ)1=1