IPMAT Rohtak 2020Algebra > Easy316.23316.22316.21316.2✅ Correct Option: 2Related questions:The greatest number among 23002^{300}2300, 32003^{200}3200, 41004^{100}4100, 2100+31002^{100} + 3^{100}2100+3100 isIf 2x=3y=6−z2^{x} = 3^{y} = 6^{-z}2x=3y=6−z, then (1x+1y+1z)(\frac{1}{x} + \frac{1}{y} + \frac{1}{z})(x1+y1+z1) is equal toSimplify : 0.06254+0.0083+0.09−162⋅5×3253\dfrac{\sqrt[4]{0.0625}+\sqrt[3]{0.008}+\sqrt{0.09}-1}{\sqrt[3]{62 \cdot 5 \times \sqrt[5]{32}}}362⋅5×53240.0625+30.008+0.09−1