IPMAT IndoreGeometry > Hardk2sinθ2+ksinθc2+k2sin2θ\dfrac{k^2 \sin \theta}{2} + k \sin \theta \sqrt{c^2 + k^2 \sin^2 \theta}2k2sinθ+ksinθc2+k2sin2θk2sin2θ2+ksinθc2−k2sin2θ\dfrac{k^2 \sin 2\theta}{2} + k \sin \theta \sqrt{c^2 - k^2 \sin^2 \theta}2k2sin2θ+ksinθc2−k2sin2θk2cos2θ2+ksinθc2−k2sin2θ\dfrac{k^2 \cos 2\theta}{2} + k \sin \theta \sqrt{c^2 - k^2 \sin^2 \theta}2k2cos2θ+ksinθc2−k2sin2θk2cosθ2+ksinθc2+k2sin2θ\dfrac{k^2 \cos \theta}{2} + k \sin \theta \sqrt{c^2 + k^2 \sin^2 \theta}2k2cosθ+ksinθc2+k2sin2θ✅ Correct Option: 2Related questions:IPMAT Indore 2022In a right-angled triangle ABC, the hypotenuse AC is of length 13 cm. A line drawn connecting the midpoints D and E of sides AB and AC is found to be 6 cm in length. The length of BC isIPMAT Indore 2024Let △ABC\triangle ABC△ABC be a triangle with AB=ACAB = ACAB=AC and DDD be a point on BCBCBC such that ∠BAD=30∘\angle BAD = 30^\circ∠BAD=30∘. If EEE is a point on ACACAC such that AD=AEAD = AEAD=AE, then ∠CDE\angle CDE∠CDE equalsIPMAT Indore 2019The number of points, having both coordinates as integers, that lie in the interior of the triangle with vertices (0,0),(0,31),(0, 0), (0, 31),(0,0),(0,31), and (31,0)(31, 0)(31,0) is